

International Journal of Engineering Research

ISSN: 2348-4039

& Management Technology

July-2017 Volume 4, Issue-4

Email: editor@ijermt.org

www.ijermt.org

A TREATISE ON TOPOLOGICAL b- REGULAR SPACES

PALLAB KANTI BISWAS Research Scholar, Mathematics Reg.No.KU1423164 Kolhan University, Chaibasa, Jharkhand, India

ABSTRACT

The present paper introduces the notion of b- Regular spaces and this concept is important generalisation of regularity using the notion of b- open and b- closed sets in a topological space.

D. And rejevic introduced a new class of generalised open sets in a topological space, the so called b- open sets, which contains all semi- open sets and pre – open sets. No doubt b- open sets lie in between the class of the union of pre – open sets and semi – open sets and the class of β – open sets. Hence, the framing of this paper bears the main aim to introduce and study b- regularity in the space.

The aim of this paper is to study the class of b- regular spaces and b- T_3 space. Many related theorems and examples have been cited. We also obtained characterization theorem and preservation theorem.

KEY WORDS: $b - regular space, b - T_3 space, b - homomorphism, b - irresolute, b - closure of set, b - Tychonoffspace.$

INTRODUCTION

D .Andrijivic, a polish mathematician, introduced and investigated semi – pre – open sets¹ in 1986. Later on in 1996, he conceptualised b- open sets² which are some of the weak forms of open sets. Let A be a subset of a spaeX. Then closure and the interior of A are denoted by cl(A) and int(A) respectively.

DEFINITION (1.1):

A subset A of space (X,T) is called

(a) a pre – open^{4,7} set if A int(cl(A) and pre – closed set if cl (int (A)) \subseteq A;

(b) a semi – open⁵ set if $A \subseteq cl$ (int(A)) and semi – closed set if int (cl(A)) $\subseteq A$;

(c) an α - open set⁶ if A \subseteq int (cl(int(A))) and b - closed set if cl(int(cl(A))) \subseteq A;

(d) a β – open set⁸ if A \subseteq cl(int(cl(A))) and β – closed set¹ if int (cl(int(A))) \subseteq A.

Now, a new class of generalized open sets given by D. Andrijevic under the name b – open sets is as below.

DEFINITION $(1.2)^{2,3}$:

A subset A of a space (X,T) is called a b – open set² if $A \subseteq cl(int(A)) \cup int(cl(A))$ and a b – closed set³ if $cl(int(A)) \cap int(cl(A)) \subseteq A$.

All the above given definitions are different and independent. The classes of pre – open, semi – open, α – open, semi – pre – open and b – open sets of a space (X,T) are usually denoted by PO (X,T), SO (X,T), T^{α}, SPO (X,T) and BO (X,T) respectively.

DEFINITION (1.3) : b – Regular Spaces :

A topological spaces (X,T) is said to be a b – regular space if for every b – closed subset F of X, and for every point $x \in X$ in the manner that $x \notin F$, there exist disjoint b – open sets $G,H \subseteq X$ s.t. $F \subseteq G$ and $x \in H$.

or

For every b – closed subset F of X and for each $x \in F^{C}$, there exist disjoint b-open sets containing F and x separately.

In other words a topological space (X,T) is a b – regular space if given a point $x \in X$ and a b – closed set $F \subseteq X$ such that $x \notin F$ then there exist b – open sets $G, H \subseteq X$ such that $F \subseteq G$, $x \in H$ and $G \cap H = \phi$.

DEFINITION (1.4): **b** – **T**₃ Space :

A topological space (X,T) is defined to be a b- T_3 space if it is both b – regular and b- T_1 space.

EXAMPLES OF b – Regular space (1.5) :

(i) Every discrete space is b – regular. Let $x = \{a,b\}$ $T = \{ \varphi, \{a\}, \{b\}, x\}$ Here T is a discrete topology $T^c = \{ \varphi, \{a\}, \{b\}, x\}$ BO (X, T) = $\{ \varphi, \{a\}, \{b\}, x\}$ BC (X, T) = $\{ \varphi, \{a\}, \{b\}, x\}$ Here (X,T) is b – regular.

(ii) Every indiscrete space is b- regular.Let X be finite non – empty set such that

 $X = \{a, b, c\}$ $T = \{ \phi, x \}$ $BO (X, T) = \{ \phi, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ b, c \}, \{ c, a \}, x \} = P (x)$ $BC(X, T) = \{ \phi, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ b, c \}, \{ c, a \}, x \}$ Here, (X,T) is b – regular.

Theorem (1.6)– Every b – regular and T_1 - space is a b – T_3 space.

Proof: Let (X, T) be a T_1 space.

Let x , $y \in X$; where $x \neq y$.

Then since X is a T_1 - space, $\{x\}$ is a closed set and in turns $\{x\}$ is a b - closed set.

Hence, (X,T) is a $b - T_1$ space.

Since , a topological space (X,T) is a b- T_1 space iff every singleton set $\{x\} \subseteq X$ is b – closed. [by a theorem].

This means that (X,T) being b- regular and b- T_1 space is a $b - T_3$ space.

Hence, the theorem.

Theorem (1.7) – If (X,T) is a topological space then the following statements are equivalent :

- (i) (X,T) is b regular.
- (ii) For every point $x \in X$ and each b- closed set N containing x, there exists a b closed set M containing x s.t. $M \subseteq N$.

(iii) every b – closed subset G of X is the intersection of all super b – closed sets of G. **CHARACTERIZATION THEOREM**

Theorem (1.8) - A topological space (X,T) is b- regular iff $\forall x \in X$ and every b – open set N containing x, there exists a b- open set M containing x s.t. b- $cl(M)\subseteq 0$.

PROOF: Necessary Condition:

Let (X,T) be a b- regular space. Let O be a b – open set containing $x \in X$. Since , (X,T) is b – regular hence \exists b- open sets L,M s.t. O^c \subseteq L, $x \in$ M and L \cap M $\Rightarrow \varphi$, since O^c is b- closed and $x \notin$ O^c . Again , L \cap M \Rightarrow M \subseteq L^c \Rightarrow b cl (M) \subseteq b cl (L^C) = L^C Since, L^c is b – closed.

Also, $O^c \subseteq L \Longrightarrow L^c \subseteq O$. So, that $b cl (M) \subseteq L^c and L^c \subseteq O$ $\Longrightarrow bcl (M) \subseteq O$

Hence, Proved.

SUFFICIENT CONDITION:

Let the prescribed codition hold good and given as :

 $\forall x \in X$ and every b – open set N containing x there exists a b-open set M containing x s.t. b cl (M) \subseteq N. Let P be a b- closed set s.t. $x \notin P$ then $x \notin P \implies x \in P^c$ which is b – open.

Now, $x \in P^c \Longrightarrow \exists a b - open set M$ s.t. $x \in M$ and $b cl (M) \subseteq P^c$. [According to the prescribed condition] $\Rightarrow P \subseteq \{ b cl (M) \}^c$. Thus, $x \in M \land P \subseteq \{ b cl (M) \}^c$ Which is b - open.

Also,

 $\mathbf{M} \cap \{\mathbf{b} \operatorname{cl}(\mathbf{M})\}^{c} \subseteq [\mathbf{b} \operatorname{cl}(\mathbf{M})] \cap [\mathbf{b} \operatorname{cl}(\mathbf{M})]^{c}$

or, $M \cap \{ b cl (M) \}^{c} \subseteq \phi$.

Since , ϕ is a subset of every set , hence $M \cap \{b cl(M)\}^c = \phi$.

Let, $\{b cl (M)\}^c = G$, then we obtain that, as x is arbitrary, for every $x \in X$ and every b - closed set P for which $x \notin P$, there exist b - open sets M & G such that $P \subseteq G$ and $x \in M$, where $M \cap G \Longrightarrow \varphi . \Longrightarrow (X,T)$ is b - regular.

Hence, the sufficient codition.

THEROM (1.9): The property of a space being b - regular is a topological invariant under b - homomorphism.

PROOF: Let (X,T_1) be a b – regular space and (Y,T_2) is a b – regular space and (Y,T_2) is a b – homomorphic image of (X,T_1) . We have to show that (Y,T_2) is also b – regular.

Now, if H be a T_2 -b closed subset of Y and $y \in Y$ s.t. $y \notin H$, then f being one – one onto , $\exists x \in X$ s.t. $f(x) = y \Longrightarrow f^{-1}(y) = x$ (1)

Also f: $T_1 \rightarrow T_2$ is b – irresolute \Longrightarrow f¹(H) is $T_1 - b$ – closed

and $y \notin H \implies f^1(y) \notin f^1(H)$

 \Rightarrow x \notin f¹(H) by (1)

 $\Longrightarrow f^{1}(H) \text{ is } T_{1}\text{--}b \text{ closed and } x \in X \text{ s.t. } x \notin f^{1}(H)$

 $\Longrightarrow (X,T) \text{ being } b - \text{regular }, \ \exists \ T_1 - b \text{ open sets } N, M \text{ s.t. } x \in N \text{ , } f^1 \ (H) \subseteq M \text{ and } N \cap M \ \Longrightarrow \varphi.$

But $X \in N \Longrightarrow f(X) \in f(N) \Longrightarrow y \in f(N)$ by (1),

 $\mathbf{f}^{1}\left(\mathbf{H}\right)\ {\boldsymbol{\subseteq}}\mathbf{M}\quad {\boldsymbol{\Longrightarrow}}f\left(\mathbf{f}^{1}\left(\mathbf{H}\right)\right){\boldsymbol{\subseteq}}f\left(\mathbf{M}\right),$

 $\Rightarrow H \ \subseteq f(M)$

and $N \cap M \implies \varphi \Longrightarrow f(N \cap M) = f(\varphi)$

 $\Longrightarrow f\left(N\right)\cap$ f (M) = φ , since $\ f$ is one – one and f (φ) = φ

Also, f is an M - b - open map

 \Rightarrow f (N) = N₁ and f (M) = N₂ (say) are T₂ - b - open.

Conclusively, $\exists T_2 - b - open \text{ sets } N_1 \text{ and } M_1 \text{ s.t. } y \in N_1 \text{ , } H \subseteq M \text{ and } N_1 \cap M_1 = \varphi.$

It follows that (Y,T_2) is also a b – regular space and hence b – regularity is a topological invariant.

Hence, the theorem.

DEFINITION (1.10) :Completely b – Regular Spaces

A topological space (X,T) is said to be a completely b – regular space iff $\forall b$ – closed subset F of X and every point x of F^c there is a b – continuous function f on X into the subspace [0,1] of real line , such that f (x) = 0 and f (y) = 1 $\forall y \in F$.

In other words, a topological space (X,T) is a completely b – regular space if given a closed set $F \subseteq X$ and a point $x \in X$ s.t. $x \notin F$, $\exists a$ cotinuous function

f: X \rightarrow [0,1] with f(x) = 0, f(F) = {1}.

DEFINITION (1.11):b - Tychonoff space or $b - T_{3/2}$ space

A Completely b - regular as well as $b - T_1$ space is said to be a b - Tychonoff space.

A b – Tychonoff space is known as b – $T_{3/2}$ space.

REFERENCES:

- 1. Andrijevic, D., Semi-pre-open sets. Mat. Vesinik, 1986, 38, 24-32.
- 2. Andrijevic, D., On b-open sets, Mat. Vesink, 1996, 48, 59-64.
- 3. VidyottamaKumari& Dr. Thakur C.K. Raman, On characterization of b-open sets in topological spaces, Int. J. of Application or Innovation in Engg. of Management (I.JAIEM), December 2013, Vol. 2, Issue 12, 229-235.
- 4. A.S Mashhour, M.E. Abd El-Monsef& S.N. El-deeb, on pre-continuous and weak precontimous mappings, Proc. Math. Phys. Soc. Egypt 1982, (53), 47-53
- 5. N. Levive, semi-open sets and semi-continuity in topological spaces, Amer. Math, Monthly 1963, 70, 36-41.
- 6. O. Njstad, on some classes of nearly open sets, pacific J. Math. 1965, 15, 961-970
- 7. H.H corson & E. Michael, Metrizability of certain countable unions, Illeuois J. Math. 1964, 8, 351-360.
- 8. M.E. Abd El-Monsef, S.N. El-Deeb& R.A Mahmond, □-open sets and □-continuous mappings, Bull.Fac.sci. Assint Univ. 1983, 12, 77-90.